Software Requirements Specification

Wallee - Personal Finance Mobile App

Team Members
Emma Bahr ebahr2022@my.fit.edu
Matteo Caruso mcaruso2023@my.fit.edu
Joshua Cajuste jcajuste2022@my.fit.edu
Kyle Gibson kgibson2021(@my.fit.edu

Client & Faculty Advisor

Dr. Siddhartha Bhattacharyya sbhattacharyya@fit.edu
Doug Gibson

mailto:ebahr2022@my.fit.edu
mailto:mcaruso2023@my.fit.edu
mailto:jcajuste2022@my.fit.edu
mailto:kgibson2021@my.fit.edu
mailto:sbhattacharyya@fit.edu

Table of Contents

—

Introduction
Core Function 1: Bank Account Integration & Transaction Tracking
o 2.1 Purpose
o 2.2 Test Case 1: Linking a bank account
m 2.2.1 Procedure
m 2.2.2 Expected Output
o 2.3 Test Case 2: Automatic transaction categorization
m 2.3.1 Procedure
m 2.3.2 Expected Output
2.3.3 Alternative: Unknown transaction type
Core Function 2: Budget Creation & Management
o 3.1 Purpose
o 3.2 Test Case 1: Creating a custom budget category
m 3.2.1 Procedure
m 3.2.2 Expected Output
o 3.3 Test Case 2: Viewing budget vs. actual spending
m 3.3.1 Procedure
m 3.3.2 Expected Output
Core Function 3: Financial Goals & Progress Tracking
o 4.1 Purpose
o 4.2 Test Case 1: Creating a savings goal
m 4.2.1 Procedure
m 4.2.2 Expected Output
o 4.3 Test Case 2: Adjusting budget after overspending
m 4.3.1 Procedure
m 4.3.2 Expected Output
Core Function 4: Al Financial Assistant
o 5.1 Purpose
o 5.2 Test Case 1: Asking Al assistant about budget status
m 5.2.1 Procedure
m 5.2.2 Expected Output
o 5.3 Test Case 2: Receiving proactive alerts
m 5.3.1 Procedure
m 5.3.2 Expected Output
Core Function 5: Reports & Visualizations
o 6.1 Purpose
o 6.2 Test Case 1: Viewing bi-weekly financial report
m 6.2.1 Procedure
m 6.2.2 Expected Output
o 6.3 Test Case 2: Graph comparison of budget vs. actual
m 6.3.1 Procedure
m 6.3.2 Expected Output

1. Introduction

This document outlines the testing plan for the Wallee application. Each of the core
functions has been divided into test cases with procedures and expected outputs. The test plan
ensures that the app meets functional, usability, and performance requirements by simulating real
user interactions.

2. Core Function 1: Bank Account Integration & Transaction
Tracking

2.1 Purpose

Allow users to securely connect bank accounts, import transactions in real time,
and categorize them.

2.2 Test Case 1: Linking a Bank Account

Procedure:
1. User navigates to “Link Account” Screen
2. User selects their bank provider
3. User enters secure login credentials
4. System confirms successful connection

Expected output: Shows that their bank account was successfully linked and
shows the transactions were imported into the app dashboard for the user to see.

Success Scenario: The user would see transactions on the dashboard

Alternative scenarios: Would have an API error that would then prompt a retry.

2.3 Test Case 2: Automatic Transaction Categorization

Procedure:

1. User views recent imported transactions
2. Application assigns (e.g., rent, groceries, dining)

Expected output: transactions categorized
Success Scenario: Categorizes appear correctly

Alternative Scenarios: Unknown = “Uncategorized” with prompt to reassign

3. Core Function 2: Budget Creation & Management

3.1 Purpose

Allow users to create, edit, and track budgets across spending categories.
3.2 Test Case 1: Creating a Custom Budget Category
Procedure:
User navigates to “Budgets” tab

User selects “Add Budget”

User enters category name and monthly limit
User saves budget

P

The expected output would show the budget was successfully created and
displayed in the dashboard.

3.3 Test Case 2: Viewing Budget vs. Actual Spending
Procedure:
1. User navigates to “Budget Summary”
2. User selects a specific category

3. System shows amount budgeted vs. actual spent

The expected output shows that the user sees a side-by-side comparison with
overspending/underspending highlighted.

4. Core Function 3: Financial Goals & Progress Tracking
4.1 Purpose
Allow users to set and monitor savings goals.
4.2 Test Case 1: Creating a Savings Goal

Procedure:

1. Navigate to goals

2. Add new goal
3. Enter amount and deadline

Expected output: Goal saved and tracked
Success Scenario: Goal progress bar updates

Alternative Scenario: Invalid data = error prompt
4.3 Test Case 2: Adjusting Budget After Overspending

Procedure:

1. Overspend in a category
2. System recalculates budget

Expected Output: Budget adjusts
Success Scenario: New safe-to-spend calculated

Alternative Scenario: If unable to adjust, warning message

5. Core Function 4: AI Financial Assistant
5.1 Purpose

Provide users with real-time insights and guidance.
5.2 Test Case 1: Asking Al Assistant About Budget

Procedure:

1. Open Al assistant
2. Ask: “What’s my safe-to-spend?”’

Expected Output: Al responds with value
Success Scenario: Correct number returned

Alternative Scenario: API delay = fallback message
5.3 Test Case 2: Receiving Proactive Alerts

Procedure:

1. Spend beyond budget
2. Wait for notification

Expected Output: alert received
Success Scenario: Notification shown within seconds

Alternative Scenario: If notifications are disabled, log in system

6. Core Function 5: Reports & Visualizations
6.1 Purpose
Enable users to view summaries and graphs of financial activity.
6.2 Test Case 1: Viewing Bi-weekly Financial Report

Procedure:

1. Navigate to reports
2. Select bi-weekly

Expected Output: Summary generated
Success Scenario: Data displays correctly

Alternative Scenario: No data = “No report available”
6.3 Test Case 2: Graph Comparison of Budget vs. Actual

Procedure:

1. Navigate to graphs
2. Choose category/time range

Expected Output: Graph shown
Success Scenario: Accurate chart displays

Alternative Scenario: Data missing = empty graph placeholder

	
	
	Table of Contents

