Software Requirements Specification

Wallee - Personal Finance Mobile App

Team Members

Emma Bahr ebahr2022@my.fit.edu
Matteo Caruso mcaruso2023@my.fit.edu
Joshua Cajuste jcajuste2022@my.fit.edu

Kyle Gibson kgibson2021@my.fit.edu

Client & Faculty Advisor

Dr. Siddhartha Bhattacharyya sbhattacharyya@fit.edu
Doug Gibson

Meeting Dates with Clients

Meeting 1 with Mr. Gibson: September 15, 2025
Meeting 1 Dr. Bhattacharyya: September 26, 2025

mailto:ebahr2022@my.fit.edu
mailto:mcaruso2023@my.fit.edu
mailto:jcajuste2022@my.fit.edu
mailto:kgibson2021@my.fit.edu
mailto:sbhattacharyya@fit.edu

1.0 Introduction

1.1 Purpose

The purpose of this document is to specify the requirements for Wallee, a personal
finance and budgeting application. Wallee is designed to help users track their income, expenses,
and savings goals by securely connecting to their financial accounts and providing actionable
insights. The application integrates automated bi-weekly budgeting, expense categorization, and
an Al-power assistant to provide personalized guidance and education.

This requirements document defines what the system should do, specifying the expected
features, behaviors, and performance criteria. It is intended for developers, testers, advisors, and
clients to establish a shared understanding of the system’s functionality before design and
implementation.

1.2 Scope

Wallee will be developed as a cross-platform mobile application using Flutter with
backend services implemented in Node.js and Python. The system will integrate securely with
financial institutions via Plaid and similar providers, ensuring accurate real-time data
synchronization. Key features:

Secure bank account linking and real-time transactions updates
Automated transaction categorization with manual adjustments
Paycheck based bi-weekly budgeting and safe-to-spend summaries
Short-term and long-term savings goal creation and tracking
Al-powered financial assistant for proactive tips and education
Visualization of spending and budget comparisons in table and graphs

The application will serve students, freelancers, young professionals, retirees, and
households. Wallee’s focus is on automation, personalization, and proactive financial support,
differentiating it from static tools such as Mint or PocketGuard.

1.3 Definitions, Acronyms, and Abbreviations

e Safe-to-Spend: Amount left over after accounting for recurring bills and saving
goals.

Al Assistant: Chatbot powered by OpenAl/spaCy that provides financial guidance
NLU: Natural Language Understanding for chatbot functionality

OAuth 2.0: Secure authentication standard for bank integration

Node.js(TS): Backend runtime for API/webhooks

PostgreSQL: Core ledger and budgeting database

FastAPI: Lightweight Python framework for analytics and forecasting services.
AES Encryption: Industry-standard encryption for sensitive data storage.

1.4 Overview
The remainder of this document provides an overall description of Wallee, a breakdown
of functional, interface, and performance requirements, and assumptions and dependencies.
Together, these sections define the expected behaviors and constraints of the system.

2.0 Overall Description

2.1 Product Perspective

Wallee builds on existing concepts of budgeting tools but ass unique features that
distinguish it from competitors:

Paycheck-based recalculations that adapt dynamically to overspending or income
changes

Al-driven insights that explain financial data in simple language and recommend
actionable steps

Tailored experiences for different users (students, freelancers, retirees, couples).

2.2 Product Functions

Bank Account Linking: Secure connection to financial accounts

Expense Categorization: Automatic and customizable classification of
transactions

Budget Generation: Bi-weekly budgets aligned with pay periods

Safe-to-Spend tracking: Real time calculations of discretionary funds

Financial Goals: Creation, tracking, and adjustments of savings goals

Reports & Summaries: Bi-weekly, weekly, and monthly breakdowns

Al Assistance: Chatbot providing tips, reminders, and financial literacy support

2.3 User Characteristics

Students - Manage tuition, rent, and discretionary spending

Freelancers - Adjust budgets around irregular income and tax payments
Young Professionals - Track recurring bills, savings, and lifestyle expenses
Couples/Retirees - Share budgets and manage household or retirement goals

All users are expected to have smartphone literacy and access to the internet.

2.4 Assumptions and Dependencies

Banking APIs remain available and reliable

Users consent to data sharing for personalized insights

Mobile devices run on current iOS/Android versions compatible with Flutter
Internet access is available for synchronization

Third-party Al services maintain uptime and reasonable latency.

Dependence on app store policies (Google Play / Apple App Store approval)
Assumptions about user financial literacy level

Dependencies on mobile device features (push notifications, biometrics)
Dependencies on third-party services (Plaid availability, OpenAl API rate limits,
hosting uptime like AWS/GCP)

3.0 Specific Requirements

3.1 Functional Requirements
3.1.1 Bank Integration

e 3.1.1.1 The system shall allow users to securely link bank accounts
via Plaid

e 3.1.1.2 The system shall update transactions and balances in real
time

e 3.1.1.3 The system shall encrypt all sensitive financial data using
AES

e 3.1.1.4 The system shall handle errors if API connectivity fails

3.1.2 Expense Categorization

e 3.1.2.1 The system shall automatically categorize transactions

e 3.1.2.2 The system shall allow users to reassign or rename
categories

e 3.1.2.3 The system shall learn from user overrides to improve
future categorizations

e 3.1.2.4 The system shall maintain a history of categorized
transactions for reporting

3.1.3 Budgeting Management

e 3.1.3.1 The system shall generate bi-weekly budgets based on
income and recurring expenses

e 3.1.3.2 The system shall display a safe-to-spend amount after each
paycheck

e 3.1.3.3 The system shall adjust budgets when overspending occurs

e 3.1.3.4 The system shall notify users when spending nears or
exceeds category limits

3.1.4 Savings Goals

e 3.1.4.1 The system shall allow creation of savings goals with
amounts and deadlines

e 3.1.4.2 The system shall track progress toward goals in real time

e 3.1.4.3 The system shall suggest adjustments if progress falls
behind

e 3.1.4.4 The system shall support multiple simultaneous goals

3.1.5 Reports and Visualization
e 3.1.5.1 The system shall provide weekly, bi-weekly, and monthly
financial summaries
e 3.1.5.2 The reports shall include budgeted, spent, and remaining
balances in tables

e 3.1.5.3 The system shall display visual graphs comparing budget
vs. actual spending

e 3.1.5.4 The system shall highlight overspending trends with
color-coded alerts

3.1.6 Al Financial Assistant

® 3.1.6.1 The chatbot shall answer queries in natural language
® 3.1.6.2 The chatbot shall provide personalized financial tips
® 3.1.6.3 The chatbot shall send reminders about bills and goals
[

3.1.6.4 The chatbot shall provide financial literacy education
modules

3.2 Interface Requirements

3.2.1 Touchscreen User Interface
e The system shall accept input via touchscreen
e The system shall support text entry through mobile keyboards
e The system shall allow biometric authentication (FaceID/TouchID)
where available

3.2.2 Graphical User Interface
e 3.2.2.1 The system shall provide a personalized dashboard with
budgets, goals, and safe-to-spend
e 3.2.2.2 Reports shall be displayed in both tables and graphs
e 3.2.2.3 The system shall allow switching between daily, weekly,
and monthly views
e 3.2.2.4 The system shall provide customization of dashboard
widgets
3.2.3 Ergonomics
e 3.2.3.1 The system shall notify users of overspending, upcoming
bills, and progress updates
e 3.2.3.2 Notifications shall be configurable
e 3.2.3.3 The system shall provide quick access widgets for
safe-to-spend and Al assistant

3.3 Performance Requirements
e The system shall refresh financial data within 5 seconds of API requests
e The system shall support up to 10,000 transactions per user without

slowdown

e The system shall handle up to 1,000 concurrent users without service
degradation

o The Al chatbot shall provide responses within 2 seconds for standard
queries

e The categorization algorithm shall achieve at least 90% accuracy
e The system shall maintain 99.5% uptime excluding planned maintenance

4. Use Cases

4.1 Use Case 1: Bank Account Linking

Actor: User, Plaid API
Preconditions: User has valid bank credentials

Main Flow:
1. User selects “Link Bank Account”

2. User chooses bank provider
3. Credentials entered securely
4. System imports transaction

Success Scenario: Transactions appear in the dashboard
Alternative Scenario: API error = system prompts retry

4.2 Use Case 2: Expense Categorization

Actor: User, System
Preconditions: Linked account with transactions

Main Flow:
1. User views transaction list

2. System auto-assigns categories
3. User edits if needed

Success Scenario: Transactions are categorized correctly
Alternative Scenario: Unknown category assigned = “Uncategorized” with user

prompt.

4.3 Use Case 3: Budget Management

Actor: User, System
Preconditions: Linked income source

Main Flow:
1. User creates a budget
2. System assigns spending limits per category
3. Safe-to-Spend calculated after each paycheck

Success Scenario: Budget updates correctly and reflects spending
Alternative Scenario: Overspending = red warning alert displayed

4.4 Use Case 4: Savings Goals

Actor: User
Preconditions: Budget Created

Main Flow:

1. User sets goal amount and deadline

2. System tracks progress from income vs. expenses
3. Progress visualized in dashboard

Success Scenario: Goal progress shows with timeline
Alternative Scenario: Falling behind = suggestion to adjust budget

4.5 Use Case 5: Al Assistant Query

Actor: User, AI Assistant
Preconditions: Active session

Main Flow:

1. User types “What’s my safe-tospend?”
2. Al fetches current budget data

3. System responds in natural language

Success Scenario: Al replies with accurate safe-to-spend amount
Alternative Scenario: API timeout = fallback message “Unable to fetch now”

5.0 Success Scenarios Summary

Bank Linking: Successful import of transactions
Categorization: 90% accuracy, editable by users
Budgeting: Real-time safe-to-spend visible
Goals: Progress tracked with alerts

Al Assistant: Responses within 2 seconds

